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Abstract

Simulation-based, model-free solutions to Markov Decision Processes (MDPs) using the 

algorithm Least Squares Policy Iteration (LSPI) have been applied to multiple practical settings 

and in several variants. An optimal policy in an MDP is that policy, or a description of which 

action to take in a state of the MDP, which performs best according to a given metric such 

as infinite-horizon d iscounted c ost. A  s imulation-based a lgorithm f or a n M DP o btains the 

optimal policy for an MDP in a model-free manner, i.e. without requiring to know apriori any 

transition probabilities of the MDP under any policy. This work proposes LSPI-CAS, a version 

of LSPI for compact action-sets, thus avoiding the discretization of the available action set 

in a state and thereby improving control over the system. Regular LSPI works by repeatedly

picking the current best action in a state x from a finite feasible set of actions Ax, requiring 

finding a minimum over |Ax| values. Our variant uses two kinds of parametrization, a feature 

vector φ(x) for the state called the actor, and ϕ(x, a) for the state-action pair which is the critic. 

LSPI-CAS employs a stochastic gradient algorithm called Simultaneous Perturbation Stochastic 

Approximation (SPSA) to update the actor in each iteration. Regular LSPI has a module named 

Least-Squares Q-Value (LSQ) which we employ as critic to evaluate perturbed policy iterates, 

and further update the policy iterate in direction of improving performance. Our algorithm is 

for infinite-horizon discounted-cost/reward MDPs, the case of finite-horizon compact-action 

set MDPs having been solved in an earlier work. Numerical results on three settings, a. control 

of an inverted pendulum, b. Exercise Policy calculation for an American Put option, and c. M/

M/1/K queue control problem are provided for the algorithm, alongside comparison with LSPI. 

Improvements in both performance and run-time to find an optimal policy are demonstrated.



I. INTRODUCTION TO LSPI

An algorithm called Least-Squares Policy Iteration (LSPI) in [1], [2] presents a novel 

way of solving Markov Decision Processes (MDPs) for their optimal policy. LSPI uses 

very low levels of apriori information or memory storage. In particular, the base version 

of LSPI only requires an offline s et o f L  t uples o f t he t ype (s, a, r, s ′), w here s  i s the 

starting state of the MDP, a is the discrete action applied as control, r is the reward 

accruing due to such action or its resultant transition to next state s′.
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Investigation into improving LSPI behaviour continues on account of further appli-

cability to the newer cognitive technique of Deep Reinforcement Learning, cf. [3]. We

propose an LSPI algorithm that is suited to deterministic, compact action set MDPs

that will be applicable to settings where discretization of the action space is not easily

possible, or may result in some loss of optimal control.

Simulation-based solutions to MDPs are considered efficient since the transition prob-

ability matrices of a given MDP (one for each policy) are not available, in general,

and hence closed-form solutions cannot be calculated. Further, off-policy algorithms are

considered better since every setting may not permit evaluation of the policy iterate πk

and only a memory of transitions (s, a, r, s′) (a replay memory) may need to be used.

An optimal policy is a policy that achieves the lowest expected cost in some sense:

finite, long-run average cost or infinite-horizon discounted cost. A value function of a

state x indicates the long-run cost of taking an action in a state, the action being as

dictated by the current policy iterate πk. Within simulation-based solutions, algorithms

like LSPI or LSPI-CAS that use parametrization of states or state-action pairs to infer

a state’s value function (rather than actually store each state’s value function in a table)

are considered efficient in terms of space complexity. This is because the state space of

system increases exponentially once a finer discretization is selected or a new dimension

for the existing action is added.
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A. Brief introduction to LSPI

Consider an MDP of finite state space S, and a finite action space Ax per state

x, currently operating under policy π (i.e. π(x) ∈ Ax for a state x ∈ S). In LSPI,

the parameterization to which all computation is restricted is that of a state-action pair

(x, a). Thus, only a feature-vector ϕ(x, a) ∈ RK , K << |S|×|Ax|, of a state-action pair

is available and no other storage (e.g. to store exact Q-value Q(x, a) or value-function

V (x)) is allowed. A weight vector wπ has to be computed such that wTπϕ(x, a) ≈

Qπ(x, a) where Qπ(x, a) is defined as the Q-value of (x, a) under policy π, i.e.

Qπ(x, a) = E{R(x, a, y) + γQπ(y, π(y))}, (1)

with y ∈ S, a random variable, being the state to which transition of the MDP occurs

upon taking action a in state x. As an analogy, note that in the tuple (s, a, r, s′) explained

earlier, x is s, r stands for R(x, a, y) (is also a random variable given x and a), whilst

s′ is y. Also, 0 < γ < 1 above is the discount factor for this discounted-reward infinite

horizon MDP. In the case of LSPI, the policy π used in the definition (1) happens to be

an implicit policy as will be explained in the following.

The inner module of the LSPI algorithm is another algorithm called LSQ (for Least-

Squares Q-value) (cf. [1, §4]). LSQ is a method for constructing a linear approximaton

Q̃π(x, a) of the Q-function of a state-action pair (x, a) where the exact value Qπ(x, a)

is as defined in (1). With respect to earlier algorithms in the literature, the novelty of

LSQ is that this approximation is performed without:

4



• using any stepsizes, as in stochastic approximation algorithms such as [4], [5] or,

• following any specific distribution for visiting the states of the MDP during a

simulated trajectory, as required in [6].

In LSPI during each iteration k, an episode of L, independent, transitions is simulated

by LSQ. For 1 ≤ l ≤ L, a single transition from a randomly-picked state xl of the MDP,

using a randomly-picked action al, is simulated. The values xl and al are both selected

uniformly from state space S and the corresponding finite action space Axl , respectively.

This also makes the entire episode suitable for experience replay, i.e. the episode can be

repeated as input data into each iteration, without hampering the convergence properties

of the algorithm. Assume that transitions (xl, al, yl) with reward R(xl, al, yl) have been

obtained. Now, an update is performed for the K ×K matrix iterate A and the K × 1

vector iterate b using the following recursion:

Al := Al−1 + ϕ(xl, al) ·
(
ϕ(xl, al)

T − γ · ϕ(yl, πk−1(yl))
T
)

bl := bl−1 + ϕ(xl, al) ·R(xl, al, yl) (2)

After a large number of transitions, the episode size L is reached and an inversion

wk = (AL)−1bL is performed to obtain the weight vector wk (this is a short-hand of

wπk). It is important to note how the prescribed action πk−1(yl) in (2) is obtained. This

policy iterate πk−1 is implicit and depends on wk−1,

πk−1(yl) := arg max
a∈Ayl

wTk−1ϕ(yl, a). (3)
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The inversion wk = (AL)−1bL, of complexity O(K3), may have to be supported by

routines such as singular value decomposition as AL may not be full-rank. This possi-

bility is however low if L is large enough. Though it is termed Policy Iteration, LSPI

holds no explicit policy iterate πk, and therefore avoids the requirement to store the

policy πk in its exact form (which in turn would have O(|S|) space complexity, or

may even be infeasible altogether). It also avoids the need to parameterize the policy

πk as in the algorithm proposed below, or even the possibility of errors owing to such

parametrization. However, it assumes that Ayl is a finite set, since finding the maximum

otherwise is non-trivial (in general).

A detailed description of LSPI, apart from the source in [2], is also provided in the

more recent [7] with LSPI variants as well as an illustration based on the ‘car on the hill’

problem. Just as the Online-LSPI proposed in [7], there also have been recent extensions

in the form of [8] where LSTDQ (equivalent to LSQ) has been used as the core module.

LSPI was further enhanced using ’Options’ discovered from processed simulation data

in recent work of [9]. A stochastic approximation version of LSPI which eliminates the

one-shot O(K3) inversion is to be found in [10].

B. Brief survey of literature

The convenience of visiting states without adhering to any specific distribution is

useful when a generative, but often complicated, computational model of the system

is available. The transition to the next state y when the current state is x and action
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a ∈ Ax is used, can then be simulated and a memory of such transitions created to

be used in each LSPI iteration. Previous work in [5] tackled the problem of obtaining

a simulation-based solution of Finite-Horizon MDPs (FHMDPs). Specifically, this was

accomplished without the handicap of requiring to visit states according to any specific

distribution that depends on current policy iterate πk (cf. [6] and the description of TD(λ)

below). The exploration tradeoff affects here: though policy πk may be known exactly,

or approximately due to parametrization, the Transition Probability Matrix (TPM) due

to πk is unknown. As a result, the simulated trajectory representing πk may not be good

at exploring the entire state and action space. Work in [11] sets out to adapt LSPI to

the continuous action-space setting. However, it requires the simulation-based algorithm

RLSAPI to calculate the maximum of a function over the same continous action-space,

for each state, and in each iteration (Figure 2, Step 7 in [11]). Finding such a maximum

may not be possible owing to lack of a closed form expression, even for the one-step

reward maxaR(x, a).

The analysis of the TD(λ) algorithm (cf. [6]), as also later techniques like LSTD(λ) (cf.

[12]) is relevant to the problem of distribution of visiting states. These analyses indicate

that visiting states according to any distribution other than the stationary distribution

imposed by iterate πk does not result in estimating the correct value function Vπk when

using linear approximation techniques. In particular, in approximating Vπk , one obtains

the projected vector ΠΦ,πkVπk where the projection depends on policy iterate πk (apart
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from the possibly static feature vector matrix constructed as Φ = {φT (xl)}Ll=1). For

this reason, the first algorithm in [5] is required to follow a πk−guided trajectory (and

is therefore suited only for finite horizon MDPs). These trajectories are to evaluate

the performance of perturbed policies π+
k = πk + δk∆k and π−k = πk − δk∆k. These

policies are obtained after perturbing policy iterate πk with Simultaneous Perturbation

Stochastic Approximation (SPSA) algorithm’s perturbation terms δk∆k where δk > 0

is a scalar diminishing stepsize while ∆k is a vector of {−1,+1} perturbations. The

second algorithm in [5], also for a finite horizon T , requires two |S|−size storage arrays

V1, V2 for iterates (as opposed to a larger T × |S| for ’lookup-table’ simulation-based

FHMDP algorithms). However, though the algorithm does not require to simulate an

entire trajectory like the first algorithm and uses the Dynamic Programming principle

instead, a dependence on O(S) makes it unqualified for large state-spaces. In [5], the

issue in not following a trajectory as specified by the stationary distribution of πk is

that the gradient estimate required by an SPSA update was not similar to the obtained

gradient estimate: i.e.

ΠΦ∇πkVπk(x) 6= E

(ΠΦ,π+
k
Vπ+

k
)(x)− (ΠΦ,π−

k
Vπ−

k
)(x)

δk∆k(x)

 .
In the following, we introduce a simulation-based algorithm LSPI-CAS that can

be considered a variant of LSPI. Both algorithms adapt LSPI to the infinite-horizon,

compact-action setting wherein policy iteration has to be performed using stochastic

gradient descent: in particular, using the SPSA method briefly described above. The dif-
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ference between LSPI and our algorithms LSPI-CAS is the presence of three iterate vec-

tors used for approximation inside the algorithm: policy iterate pk, positively-perturbed

policy’s value function v+
k , and the corresponding negative v−k . In contrast, LSPI has

only one such vector, the wk from (3) above. However, LSPI-CAS has the advantage

that action from a compact set is likely to yield greater control of the MDP in the form of

a higher obtainable reward value or faster convergence. For both algorithms, numerical

results in three settings are provided and comparisons with LSPI are favourable.

II. COMPACT ACTION SET ANALOG OF LSPI: LSPI-CAS

Assume that proposed LSPI-CAS only handles one-dimensional actions, i.e. π(x) ∈

Ax ≡ [ax, bx] ⊂ R. In LSPI-CAS, in each iteration k, it is required to recollect the L

source states xl from which transitions were simulated. One may explicitly store the

sequence of states {xl} in a memory and incur O(L) space complexity, which would

make space complexity vis-a-vis LSPI unfavourable. An alternative is to use the re-

hashing method called ‘double hashing’. This method is one of the techniques in the

closed hashing scheme employed in a Hash Table data structure (cf. [13, §3.4] for a

textbook treatment). To perform hashing into an array of size M , a double hashing

method can generate L2 distinct ‘probing sequences’ of size L using L−1 deterministic

functions fl(·), l = 2, 3, ..., L. Using the choice of functional f1(X) = X , the sequence is

written as sX = {X, f2(X), f3(X), ..., fL(X)} where each element fl(X) ∈ {1, 2, ..., L}
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is a distinct index into the array. The variable X is termed the key or the seed, and the

sequence sY generated for any other key Y 6= X is distinct.

Other than three parameter vectors pk, v+
k and v−k , LSPI-CAS will also require a per-

state feature vector φ(xl), a column vector of dimension K × 1. This is in addition to

a feature vector for every selected state-action pair φ(xl, al) of M × 1 like in LSPI.

Note that the feature vectors are composed only upon observation of the state xl or

the state-action pair (xl, al). The action in state xl specified by a policy iterate πk is

obtained as a dot product: πk(xl) = P[axl ,bxl ]
(pk

Tφ(xl)) where the function P[axl ,bxl ]
(·)

represents truncation into the compact action set [axl , bxl ]. Similarly, the gradient of the

value function Vπk will require to be calculated.

For reference, recall the Bellman equation:

Vπk(xl) := E {R(xl, πk(xl), η(xl, πk(xl))) + γ · Vπk(η(xl, πk(xl)))} , . (4)

Note the approximation Vπ+
k

(xl) ≈ (v+
k )

T
ϕ(xl, πk(xl)) where πk(xl) = P[axl , bxl ](p

T
k φ(xl)).

The calculation of v+
k will however rely on simulating a transition from xl using action

π+
k (xl) = P[axl ,bxl ]

(πk(xl) + δk∆k(xl)) where ∆k(xl) ∈ {−1,+1} is the l−th component

of the perturbation vector ∆k. Thus the policy gradient ∇πVπk(xl), will be calculated

as:

∇πVπk(xl) ≈
((v+

k )Tϕ(xl, πk(xl))− (v−k )Tϕ(xl, πk(xl)))

2δ∆k(xl)
.
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In LSPI-CAS, L is the number of transitions used to calculate v+
k and v−k using the LSQ

module, and thus update the policy iterate pk.

An infinite horizon discounted reward MDP is considered here, and positive step sizes

1 >> δk > 0, and ak are used with conditions:
∑∞
k=1 a

2
k < ∞ and

∑∞
k=1 ak = ∞. The

function Pπ(a) below is shorthand for P[axl ,bxl ]
(a) earlier. It is used to project the action

a into the feasible compact action set Axl ≡ [axl , bxl ] for each state xl. Though not

identified separately, we assume that Pπ is applicable for each state xl. The proposed

algorithm LSPI-CAS, which uses the LSQ module in steps (b)-(d), can be applied to

obtain an approximate optimal policy for a Compact Action Set MDP:

1) For each iteration k, repeat until |pk+1 − pk|→0 as k →∞:

a) Generate a state Xk from S to use as seed for a L−size sequence {xl}

b) Do L times with index l:

i) Compute state xl = fl(Xk).

ii) Generate perturbation: ∆k,l = {−1,+1} with equal probability.

iii) Store ∆k,l as l−th bit in an L−bit binary word ∆k.

iv) Calculate action al
∆
=Pπ(pk

Tφ(xl)) in xl to use in (5)-(6) below.

v) Use action a+
l

∆
=Pπ(pk

Tφ(xl) + δk∆k,l) in xl to transition to state y+
l ∈ S.

A) Compute reward R+
l = R(xl, a

+
l , y

+
l ) and action Pπ(pk

Tφ(y+
l )) at y+

l .

B) Update A+
l and b+

l as in (5) below.

vi) Use action a−l
∆
=Pπ(pk

Tφ(xl)− δk∆k,l) in xl to transition to state y−l ∈ S.
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A) Compute reward R−l = R(xl, a
−
l , y

−
l ) and action Pπ(pk

Tφ(y−l )) at y−l .

B) Update A−l and b−l as in (6) below.

c) Calculate v+
k := (A+

L)
−1
b+
L .

d) Calculate v−k := (A−L)
−1
b−L .

e) do L times with index l

i) Re-compute xl = fl(Xk) and perturbation ∆k,l as the l−th bit from ∆k.

ii) Compute l−th element of vector rk as in (7)

f) Perform update pk+1 = (ΦT
kΦk)

−1
ΦT
k · rk

A+
l := A+

l−1 + ϕ(xl, al) ·
(
ϕ(xl, al)

T − γ · ϕ(y+
l , Pπ(pk

Tφ(y+
l )))

T
)

b+
l := b+

l−1 + ϕ(xl, al) · r+
l (5)

A−l := A−l−1 + ϕ(xl, al) ·
(
ϕ(xl, al)

T − γ · ϕ(y−l , Pπ(pk
Tφ(y−l )))

T
)

b−l := b−l−1 + ϕ(xl, al) · r−l (6)

rk,l := P[axl ,bxl ]
(P[axl ,bxl ]

(pk
Tφ(xl))− ak{v+,T

k − v−,Tk }ϕ(xl, al)(2δ∆k,l)
−1) (7)

The matrix Φk is an L × K matrix with the l−th row being φT (xl). In the above

algorithm, policy gradient has been approximated using projected SPSA (7) and the value

12



function estimates have been obtained using the LSQ method ((5)-(6)). The specific term

approximated in (7) to correct existing policy Pπ(pk
Tφ(xl)) is E

{
Ṽ +
k

(xl)−Ṽ −
k

(xl)

2δk∆k

}
. Here,

Ṽ +
k (xl) and Ṽ −k (xl) are linear approximations to the value functions Vπ+

k
(xl), Vπ−

k
(xl)

similar to (4) above but when using perturbed policies π+
k and π−k . The L−size column

vector rk is then used in the recursion (1f) as a proxy for current policy πk updated

using gradient {∇πkVπk(x)}x∈S . The L iterations in Step 1b of the algorithm serve the

purpose of covering uniformly the entire state space S, to approximate matrix Φ in Φk

in an expected sense. Here, Φ is an |S| ×K matrix with the s−th row being φT (xs) for

the state numbered xs. The use of xl drawn from double hashing function xt = ft(Xk)

aids in recollection, without storage, of the entire sequence of L states visited. The

perturbations used are similarly recovered from the L−bit word ∆k composed during

the Step 1b. Also note that term (ΦT
kΦk), as well as the projection portion of the iteration

in Step 1f, can be calculated incrementally without requiring any O(|S|) data structure.

This potentially permits continuous state-space, compact action-set MDPs to be solved

for an optimal policy via simulation.

The difference with LSPI can be visualized in (5) above. Instead of computed a+
l or

a−l , LSPI would have chosen a random action al from the discrete set Axl to which

it applies. LSPI would also have a single update instead of ((5)-(6)) here. The feature

vector φ(y+
l , Pπ(pk

Tφ(y+
l ))) would be substituted with equivalent φ(yl, ak(yl)) where

ak(yl) = arg maxa∈Ayl{w
T
k−1φ(yl, a)}, using the earlier notation. It is in this latter step
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that computational delays occur, for calculating the arg maxa∈Ayl from a set whose

values change due to changing wk. Note that LSPI-CAS here does not need a Q-value

parameter wk to infer the current best action in y+
l or y−l .

III. CONVERGENCE PROOF

Notice the two kinds of matrices, state feature vector matrix Φk in each iteration k, and

a related state feature vector matrix composed of ϕ(x, πk(x)) that encodes information

due to current policy πk. Thus, Φk has dimension L×K while the matrix composed of

ϕ(x, πk(x)) would be a matrix with dimension L× (K +m) with the first K columns

being same as Φk. The effective policy update of πk = Φkpk is operationalised as

πk+1 = Φk+1pk+1 after the k−th update. The intuition behind this variation is that the

difference in the two perturbed actions (calculated using action pTk φ(xl)) prescribed for

state xl under SPSA is approximately ∆T
k φ(xl). The perturbations in LSPI-CAS satisfy

the conditions on SPSA random perturbations given in [14]. Consider notation Φπk

indicating the feature vector matrix Φk,πk above, but for all states xl ∈ S, hence of

dimension |S| × (K +m). Assume that Ṽ +
k is the |S|−size column vector constructed

using Ṽ +
k (xl) above for all xl. Also assume that P+

k is the |S|×|S| transition probability

matrix where P+
k (i, j) indicates probability of transition from i to j when action π+

k (i)

is used. Similarly, let R+
k be the |S| × 1 vector where R+

k (i) is the expected reward in

state i when action π+
k (i) is used. The vector v+

k , such that Ṽ +
k = Φv+

k , is the solution
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to the balance equation (more detailed algebra available in [2, p. 1117]):

Φπk(Φ
T
πk

Φπk)
−1

ΦT
πk

(
R+
k + γP+

k Ṽ
+
k

)
= Ṽ +

k

Φπk(Φ
T
πk

Φπk)
−1

ΦT
πk

(
R+
k + γP+

k Φπkv
+
k

)
= Φπkv

+
k

Φπkv
+
k − Φπk(Φ

T
πk

Φπk)
−1

ΦT
πk

(
γP+

k Φπkv
+
k

)
= Φπk(Φ

T
πk

Φπk)
−1

ΦT
πk
R+
k

ΦT
πk

Φπkv
+
k − ΦT

πk

(
γP+

k Φπkv
+
k

)
= ΦT

πk
R+
k

ΦT
πk

(
Φπk − γP+

k Φπk

)
v+
k = ΦT

πk
R+
k

v+
k :=

(
ΦT
πk

(Φπk − γP+
k Φπk)

)−1
ΦT
πk
R+
k

The estimation of the RHS in the latter is being performed in two parts via sampling,

A+
k ≈

(
ΦT
πk

(Φπk − γP+
k Φπk)

)
, while b+

k ≈ ΦT
πk
R+
k , just as in LSPI. Note that a sym-

metric method applies for calculating A−k and b−k also. In the above, we could use Φπ+
k

instead of Φπk , however the action corresponding to π+
k is unknown in next state y+

l .

With the feature vectors that we have chosen, we make a key assumption regarding the

approximation architecture:

||Φπkv
+
k − Vπ+

k
||
∞
≤ ε0,∀k,

where Vπ+
k

is the exact value function vector corresponding to policy π+
k . Such an

assumption is also made in the result [2, Theorem 7.1]. Note that the v+
k used cor-

responds to equations above, rather than the equivalent variable in LSPI-CAS. Now

consider shorthand for orthogonal projection operators as follows: Π = Φ(ΦT∆Φ)
−1

ΦT ,

and Ππk = Φπk(Φ
T
πk

∆πkΦπk)
−1

ΦT
πk

. Here, ∆ and ∆πk are diagonal matrices capturing
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stationary distribution of the algorithm visiting the states of the MDP. Thus, for example,

Φπkv
+
k ≈ ΠπkVπ+

k
. We also use, interchangeably, p and π s.t. π = Φp.

Theorem 1. πk converges w.p. 1 to a π∗ in A s.t. A = {π∗|Π∇πVπ∗ = 0}.

Proof: The steps (e)-(f) in LSPI-CAS above can be rewritten, using πk = Φpk as:

πk+1 := Π(P (P (πk)− akΠπk∇πkVπk − akεk)),

where P is the truncation operator applied elementwise to each component of πk as

well as the updated form of πk. In the above, εk indicates a term (incorporating ε0)

that combines finite-difference approximation error in gradient due to SPSA as well as

noise. In particular, the SPSA term in (7) is a finite-difference approximation to ∇πΠπVπ.

Applying [5, Theorem 1], we have convergence of πk to the set {π∗|ΠΠπ∇πVπ = 0}.

Note that ΠΠπ∇πVπ = Π∇πVπ due to the space spanned by columns of Φ being a

subset of similar space spanned by columns of Φπ. •

If the space of Φ is not a proper subset of Φπ, then the projection applicable would be

in the possibly null intersection of Π and Ππ. This holds true irrespective of how good

Φ and Φπ are in terms of approximation architecture. Similary, working with a case of

Φ = Φπ, ∀π is also feasible in the LSPI-CAS algorithm. Note that of the 3 numerical

examples we have considered in the next section, the trailing 2 belong to such categories,

i.e. Φ = Φπ (Options Excercise policy) and space(Φ)∩ space(Φπ) 6= φ (M/M/1/K queue

control).
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IV. NUMERICAL RESULTS

The inverted pendulum example in [2] has been broadly adapted to demonstrate the

suitability of LSPI-CAS. This setting is also found in [15], where the algorithms proposed

were different and without proof (albeit for the same setting). The inverted pendulum

guided by a differential equation in its parameters θ radians (the angle made with the

vertical, clockwise being negative) and angular velocity θ̇ radians/second. A force F ∈

[−100, 100] Newtons can be applied every 0.01s to the cart bearing the pendulum so as

to correct it and bring θ and θ̇ as close to 0, the equilibrium position, as possible. The

application interval chosen is 0.01s since the inverted pendulum’s equations of motion are

suitably linearized and hold only for small ∆t intervals. The application of the force,

however, is taken to be noisy (e.g. an imprecise push or pull by a less-sophisticated

device) due to an additive noise sample picked uniformly from [−20, 20] Newtons.

The cost for a transition to a destination state (θd, θ̇d) is taken to be |θd|+|θ̇d|
π
2

+2
. The

discount factor used in the relevant infinite-horizon discounted-cost MDP is assumed

0.9. The starting state consists of element θs chosen randomly from [− π
10
, π

10
] and θ̇s

in the interval [−0.2, 0.2] to mimic a small disturbance from equilibrium. The ’actor’

feature vector for LSPI-CAS took the form φ(x) = {φ0(x), φ1(x), ..., φK(x)} with

K = 9, φ0(x) = 1.0, and a Radial Basis Function (RBF) approximation φk(x) =

exp(−1
2
||x− xk||22) for k = 1, ..., K is used. The points xk are in the grid format (A1, A2)

with A1 ∈ {−π4 , 0,
π
4
} and A2 ∈ {−1, 0, 1}. An RBF grid of K = 27 points for ϕ(x, a)
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of regular LSPI (also required for LSQ module of proposed LSPI-CAS) has the format

(A1, A2, A3) with A1 ∈ {−π4 , 0,
π
4
}, A2 ∈ {−1, 0, 1} and A3 ∈ {−100, 0, 100}. The

feature vector dimension would therefore be 28 for regular LSPI, while it would be 10

for the actor and 28 for critic in LSPI-CAS.

In every trial, the optimal policy is calculated using 150 transition samples per iteration

for 40 iterations. This is in order to match with the 6000 samples used per experiment

in [2]. Next, the computed optimal policy is tested such that 3000 steps are taken

(corresponding to 30s of trying to balance the inverted pendulum). The starting state

is chosen randomly as before: θs from [− π
10
, π

10
] and θ̇s from [−0.2, 0.2] to mimic a

small disturbance. The testing stops if θ ≥ π
2

– indicating that the pendulum has fallen

to ground level. For each n ≤ N with N = 40, 100 trials are performed and the

average number of steps that the algorithm was able to balance are plotted. The stepsize

used for the iteration (7) above was ak = 1
(k+1)

. The discrete actions required by LSPI

were 11, {−100N,−90N, ...,−10N, 0N, 10N, ...., 90N, 100N}, representing a fairly fine

discretization of the action space [−100, 100] Newtons. The computational complexity

associated with identifying the minimum resulted in approximately 1200s for the 100

runs of LSPI. This is compared to approximately 150s, an order of magnitude lesser, for

LSPI-CAS Algorithm, all tests being performed on MATLAB. Figure 2a captures the

performance of proposed LSPI-CAS algorithm and compares it with LSPI. Figure 2b

compares variance in the average balanced steps’ computation indicating both algorithms
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Fig. 1: LSPI-CAS Vs LSPI on Inverted Pendulum

calculate better quality policies as N increases.

A second experiment was run for rate-control of an M/M/1/K queue, in the setting

of [4]. The aim is to stabilize the K−sized queue near K
2

by varying the rate of packet

arrivals λ between [0.05, 4.5]/second, where λmax = 4.5. The mean rate of packets being

processed by the server is µ = 2.0/s while there is also an uncontrolled rate of arrivals

(e.g. priority packets) at 0.2/s. A difference in this implementation of LSPI-CAS is the

use of critic averaging as suggested in [4], viz. the episode size L above is composed as

L = L′·S. Here, L′ is the number of distinct xl while S is the number of repeat transitions

simulated from these xl. In comparison, for the inverted pendulum example above S = 1.

We considered a queue of size K = 1000, for which a lookup table of size 1000 would
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Fig. 2: LSPI Experiments on M/M/1/1000 queue control

be required if the Compact-Action set algorithm of [4] were used. In contrast, LSPI-

CAS used a size-4 polynomial feature vector φ(x) = (1, x−K/2
K/2

, {x−K/2
K/2
}

2
, {x−K/2

K/2
}

3
) for

the actor. The parameters were L′ = 334 and S = 3, while the critic LSQ feature was

ϕ(x, a) = (1, |x−K/2|, |a−λmax/2|, (x−K/2)∗(a−λmax/2)). The model used for the

MDP is an embedded chain with period 1s and transition probability matrices calculated

apriori for a dense set of λ (90 actions over [0.05, 4.5]) using M/M/1/K formulae. Even

though the λ chosen by the policy could be any value in [0.05, 4.5] it is rounded off to

the nearest of these 90 values in order to use the associated transition probability.

Among applications in literature of LSPI is the American Options exercise policy

problem (cf. [16], [17]). Notice in [17, Table 1] 30 stocks of the Dow Jones 30 (DJ30)

in the period 2002-2006 to simulate using Geometric Brownian Motion (GBM) the
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performance of an in-the-money put American option. For reasons such as companies

exiting and entering the DJ30 and unusually high estimated σ for some cases, we included

only 24 of these stocks to simulate and evaluate between LSPI and LSPI-CAS. For each

stock the volatility σ against a risk-free return µ is estimated from daily closing stock

prices in 2002-2006. After this, 50, 000 trajectories of GBM simulating the security

are generated and both algorithms are trained for 63−, 126− or 252−days options.

In particular, the LSPI variant uses entire trajectories as well as the feature vector

architecture in [16], [17]. LSPI-CAS instead uses transitions from uniform-randomly

selected (s, t): s being stock price in a range [0.5S0, 1.5S0] where S0 is that stock’s

starting price. Similary, t is an integer randomly selected from [1, T ] (where T is

63, 126, or 252 as the case may be). A statistical significance indicator of better payoff

is also calculated, since the average payoff calculated in 10, 000 trajectories may contain

variance. A summary of the performance, in terms of the average payoffs across these

stocks, is given as under:

Days T of Option Term LSPI-CAS LSPI-Regular Significant (out of 24)

63 3.90 3.27 21

126 5.19 4.59 20

252 7.31 5.02 21

The significance was measured at the 5% level. The performance of LSPI-CAS in this

setting is captured in the following graphs. In each case, about 18-19 stocks from the
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Fig. 3: LSPI Experiments on American Option Exercise Policy

24 have favourable payoffs when LSPI-CAS is used, even if such stocks are excluded

wherein significance is not indicated. The average payoff for the entire portfolio is

favourable for LSPI-CAS by a minimum of 15% as seen in the table.

V. CONCLUSIONS

This article proposed an algorithm for Compact Action Set MDPs to be solved using

the basic structure of Least Squares Policy Iteration. A proof with probability 1 was

given, which also relies on intersection between the space spanned by two feature vector

matrices used in the algorithm. The algorithm and a close variant were tested on settings

of inverted pendulum, M/M/1/K queue and American Options problems, all modeled

as MDPs. As part of future work, it would be useful to compare LSPI-CAS against
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stochastic multi-armed bandit algorithms adapted to simulation-based MDPs, an example

of the latter being in [18].
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